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Azimuth-Track-Level Compensation to Reduce
Blind-Pointing Errors of the Beam-
Waveguide Antennas

W. Gawronski!, F. Baher!, and O. Quintero?

The deviations of the azimuth track level of a beam-waveguide (BWGQG) antenna
shall not exceed +0.5 mm. During tracking, this amplitude of deviations causes de-
formations of antenna structure, resulting in pointing errors that exceed the required
accuracy for 32-GHz (Ka-band) tracking. However, structural deformations caused
by the azimuth-track unevenness are repeatable; therefore, a look-up table can be
created to improve the blind-pointing accuracy. This article presents the process
for creation of the look-up table, describes the instrumentation (inclinometers and
data-collection system) necessary for determining the pointing errors, and describes
the processing of inclinometer data. It derives algorithms for the pointing-error
estimation and for the azimuth-axis tilt using the inclinometer data. It compares
the error corrections based on the created look-up table and actual measurements
of pointing errors using the conical scanning (CONSCAN) technique. This com-
parison shows a satisfactory convergence that justifies the implementation of the
approach in the forthcoming NASA missions.

[. Introduction

During tracking, an uneven azimuth-track level causes antenna tilts and flexible deformations, which
deteriorate pointing accuracy. According to the specification,® the level deviations should not exceed
40.5 mm. Preliminary analysis indicated that this level of deviations could cause pointing errors exceeding
the 32-GHz (Ka-band) tracking requirement of 1.5 mdeg. However, the pointing errors caused by the
track irregularities are repeatable; therefore, they can be calibrated. By developing a look-up table,
one provides pointing corrections as a function of the antenna azimuth position. The look-up table is
generated by measuring tilts of the alidade structure at selected points. The effectiveness of this procedure
is ultimately checked by the measurement of the antenna pointing error during tracking. In 1997, at the
James Clerk Maxwell Telescope in Hawaii, a loop-up table that compensates for the track-level unevenness
was tested and implemented (see www.jach.hawaii.edu/JACpublic/JCMT /pointing/inclinometry.html).
However, the amount of pointing improvement has not been published.
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The task of blind-pointing-error correction due to track-level unevenness consists of the following steps,
described subsequently in this article:

(1) Carry out finite-element analysis of the alidade structure to select inclinometer locations.

(2) Develop algorithms to determine the (a) pointing errors, (b) azimuth-axis tilt, and
(c) azimuth-track profile from inclinometer data.

(3) Choose the optimal azimuth rate for data collection, collecting data and verifying the
pointing model through the antenna wheel shimming.

(4) Process data, checking repeatability and smoothing the data.
(5) Create the look-up table.
(6) Verify the blind-pointing-error correction table using conical scanning (CONSCAN).

Il. Hardware and Software Description

Hardware components of the track-level-compensation (TLC) system consist of eight inclinometers,
an interface assembly, an industrial PC computer, and several single-based computer boards (analog-
to-digital converter and digital input—output data-acquisition boards). The communication between the
different components of the system is through parallel port (see Fig. 1).
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Fig. 1. Block diagram of the track-level data-collection system.

Eight surface-mount inclinometers, Model 711-2 from Applied Geomechanics, are mounted at the
antenna. These low-power, dual-axis, analog-output inclinometers contain temperature sensors. The
calibration procedure of the inclinometers is described in detail in [3]. The best calibration results are
obtained in a uniform temperature distribution on the antenna surface, observed after sunset. The
output scale factors of the inclinometer are selected using the low-gain no-filter mode and by measuring
the output in a differential mode.

Data were collected at the high-gain and no-filter mode. The output scale factor for the differential
mode was determined according to the procedure in [3] and was different for each inclinometer.

The interface box is used to process the inclinometer and antenna azimuth-encoder data to the format
acceptable by a PC computer. The data are collected via A/D and digital I/O boards installed in the
computer. These single-based computer boards allow for the recording of the inclinometers and azimuth-
encoder data.

The software components of the system include Windows NT (real-time operations), Labview (an
instrumentation and graphical program), and Matlab (an analysis tool). The data were monitored and
collected using Labview and were post-processed and analyzed by Matlab.



I1l. Inclinometer Data

Eight inclinometers were installed on the alidade structure, and their locations are marked in Fig. 2.
Each inclinometer measures tilts of its x- and y-axes. The locations of the inclinometers were selected
using the finite-element analysis of the alidade structure. The inclinometers are located such that their
tilts can be used to estimate the alidade elevation and cross-elevation rotations next to the antenna focal
point. Inclinometers 1 and 2 are located at the top of the alidade. Inclinometer 2 is located next to
the elevation encoder. Thus, the y-axis tilt of this inclinometer reflects the elevation pointing error.
Inclinometers 7 and 8 are located in the middle of the cross beam of the left and right sides of the
alidade, respectively. Their x-axis tilts, combined with the x-axis tilts of inclinometers 1 and 2, give the
cross-elevation pointing error, as will be shown later in this article. Inclinometers 3 through 6 are used
for checking the accuracy of the cross-elevation-error model and also for determining the azimuth-track
profile. The following notation is used: the x- and y-axis tilts of the ¢th inclinometer are denoted v, and
iy, Tespectively.

The inclinometer data were collected during the antenna azimuth rotation with a constant rate of
50 mdeg/s at the sampling frequency of 2 Hz. The rate of 50 mdeg/s was selected after testing different
rates and measuring the noise-level, temperature-gradient impact (through repeatability of the data).
Low-rate data have lower noise levels but larger repeatability errors than high-rate data. The tests
were performed during nighttime to minimize distortions of the antenna structure due to the thermal
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Fig. 2. Inclinometer locations on the alidade structure.



gradient. We collected six sets of data for full (0 to 360 deg) azimuth rotations, four for the clockwise
rotations, and two for the counterclockwise rotations. The data show satisfactory repeatability in the
clockwise direction (see Figs. 3 through 5). There are some drifts due to other factors, such as temperature
variations; there was about a 3-hour shift between each data collection at night. The alidade deformation
due to temperature drift was recorded while the antenna was stowed. A sample of the inclinometer data
is shown in Fig. 6. From this figure, one can see that, within the time span of 3 hours, the temperature
change causes the inclinometer to drift about 0.5 mdeg.
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Fig. 3. Repeatability of inclinometer 1 readings: (a) x-tilt and (b) y-tilt.
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Fig. 4. Repeatability of inclinometer 2 readings: (a) x-tilt and (b) y-tilt.



@

INCLINOMETER 7 X-TILT,
mdeg
o
T
!

(b)

INCLINOMETER 8 X-TILT,
mdeg
o

-5 | | | | | | |
0 50 100 150 200 250 300 350

AZIMUTH ENCODER, deg

Fig. 5. Repeatability of inclinometer x-tilt readings: (a) inclinometer 7 and
(b) inclinometer 8.
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Fig. 6. The y-tilt of inclinometer 1 due to the thermal
deformations of the alidade.

Do the errors caused by the azimuth-track unevenness depend on the antenna elevation position? This
question was answered by collecting data for the antenna elevation angles of 15, 45, 60, and 89 deg. All
inclinometer readings were the same (within the instrument accuracy), showing that the azimuth-track-
profile pointing errors do not depend on the antenna elevation position.

The data were smoothed using a zero-phase lowpass filter (see, for example, [1]), using the Matlab
filtfilt routine [2]. This filter smoothes the data without shifting them. The longer the averaging, the
smoother the curve. It was determined that a length of 50 smoothes small “bumps” that are undesirable
in the look-up table.



IV. Determining Pointing Errors

The y-tilt of the second inclinometer is a rotation with respect to the antenna x-axis, denoted d,. It
is a measure of the antenna elevation error, A.;:

A =6y = oy (1)

[see Fig. 7(a)].
The cross-elevation error, A..;, depends on the antenna elevation position, 6,;. It depends also on the

rotation, d,, of the top of the alidade with respect to the y-axis (tilt of the elevation axis) and the alidade
twist, 0, (the rotation of the top of the alidade with respect to the z-axis):

Ager = 6, cos(0e;) — §, sin(fe;) (2)

[see Fig. 7(b)]. The orientation of axes x, y, and z with respect to the antenna dish is described in Fig. 8.

The tilt of the elevation axis is an average of the x-tilts of inclinometers 1 and 2, that is,
6y = 0.5(0(130 + 042$> (3)

while the alidade twist is not directly measured by inclinometers. It is determined from the x-tilts of
inclinometers 7 and 8 by assuming that the y-tilt of the side inclinometers (7 and 8) is a satisfactory
measure of the horizontal displacements of the top of the antenna. Based on this assumption, the following
estimate of the antenna twist was obtained (see Appendix A):

5, = w (4)
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Fig. 7. Inclinometer 2: (a) tilts of the inclinometer and the azimuth correction angle,
and (b) the x-, y-, and z-rotations of the alidade, and the cross-elevation correction
angle.
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Fig. 8. The relationship between azimuth and cross-elevation errors.

where h is the alidade height and [ is the distance between inclinometers 1 and 2 (see Fig. A-1 in
Appendix A). Since h/l = 1.245, we found that

52 = 1.245(0[795 — Oégx) (5)

Combining Egs. (2), (3), and (5), the cross-elevation pointing error is determined from the x-tilts of
inclinometers 1, 2, 7, and 8 as follows:

Ager = 1.245(azy — agy) c08(0er) — 0.5(anz + oz ) sin(fe;) (6)

The azimuth error is a function of the cross-elevation error,



Therefore,

Ay =0, — 6y tan(fe;) (8)

or

Ag, = 1.245(a7y — agy) — 0.5(1, + o) tan(fe;) ©))

The accuracy of the assumption of using side inclinometers as estimators of the horizontal displace-
ments of the alidade top is checked using the inclinometer field data (see Fig. 9). In these figures, the plots
of the top, middle, and bottom tilts of the alidade sides were determined. The first two were directly
measured by inclinometers 1, 2, 7, and 8; the bottom tilt was derived from x-tilts of inclinometers 3
through 6. The antenna shimming, as described in the following section, relates the x-tilts of inclinome-
ters 3 through 6 to the wheel (or lower beam-end) displacement. The difference between the beam-end
displacements divided by the beam length gives the lower-beam tilt. These tilts show flexible deforma-
tions on top of the rigid-body motion (for pure rigid-body motion, these three angles would be identical).
The middle-beam angle was chosen as an estimator of the top horizontal displacement. Its accuracy can
be verified through the averaging of the rotations of the top and the bottom locations. Figure 10 shows
satisfactory convergence between the middle-beam rotation and the average rotation of the bottom and
the top locations.

The 6, 0y, and §, alidade rotations were smoothed for azimuth angles varied from 0 to 360 deg for a
0.1-deg azimuth-angle sample size. Their plots are shown in Fig. 11. These three plots are used for the
error correction in Eqgs.(1) and (2).
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Fig. 9. Rotations of the alidade: (a) 2-7-6-5 side and (b) 1-8-3-4 side.
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Fig. 10. Rotations of the (a) 1-8-3-4 and (b) 2-7-6-5 middle bars of the
alidade, and the average rotation of the alidade.
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Fig. 11. Rotations of the alidade due to azimuth-track unevenness:
(a) x-rotation (b) y-rotation, and (c) z-rotation.



V. Determining the Track Profile

The wheel shimming and tilt measurements were conducted to show the relationship between the
inclinometer tilt and the azimuth-track unevenness. For inclinometers 3 through 6, it was a 14.8-mdeg
x-tilt for the 2.5-mm of wheel lift. Based on this scaling and the continuous records of the lower in-
clinometer x-tilt measurements during the antenna constant-rate slewing, the azimuth-track profile was
determined and is shown in Fig. 12. It is seen from this figure that the maximum peak-to-peak track-
profile variation is 1.22 mm, slightly higher than the specification (1.02 mm).*
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Fig. 12. Azimuth-track-unevenness profile.

VI. Determining the Azimuth-Axis Tilt

Using the inclinometer data, one can determine the azimuth-axis tilt. It is represented as a sinusoidal
component in the inclinometer measurements. Its amplitude, a, and phase, ¢, need to be determined.
Let a14(7) and ai,(¢) be the ith sample of the x- and y-tilts, respectively, of inclinometer 1 and e() be
the ith sample of the azimuth encoder. The inclinometer harmonics caused by the azimuth-axis tilt are
described as

a1, (1) = acos(e(i) + @)
a1y (i) = asin(e(i) + ¢)

The amplitude and phase of the tilt are determined as follows (for the derivation, see Appendix B):

a=/A} + A3

_ A21)
= tan~ ! [ ==
4 (An

where A = { ill } is obtained from the following equation:
21

(11)

A= (PTP)"'PTy (12)

4 Tbid.
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In this equation,

ar = {gz } (13a)

a14(1) aiy(1)
A1y (2) (&3] (2)
where a1, = . and apy, = y , and
a1z(n) aiy(n)
c —s
P = [s . } (13b)
C1 S1
C2 S9
wherec=<(¢ . pands=<( . . Based on several sets of data we obtained from Eq. (11), the following
Cn Sn
are the amplitude and phase of the azimuth-axis tilt:
a = 1.6 mdeg
and
p = —64 deg

The plots of the inclinometer tilts with the best-fit sinusoid of the azimuth-axis tilt are shown in Figs. 13(a)
and 14(a). The sinusoid was subtracted from the inclinometer data, and the residuals are shown in
Figs. 13(b) and 14(b). They show that, even for the perfectly vertical azimuth axis, the pointing error
due to azimuth-track unevenness is 4 to 6 mdeg, peak-to-peak, and it is repeatable.

VII. Verification of the Look-Up Table Using CONSCAN Measurements

On DOY 349 of 1997, CONSCAN pointing errors were measured while continuously tracking a sin-
gle point source (0927+390) for 8 hours, from 10 p.m. to 6 a.m. local time for azimuth ranges from
305 to 330 and 0 to 50 deg. The CONSCAN-derived pointing errors are shown as dots in Fig. 15, while
the inclinometer-derived pointing errors are shown as a solid line. The results show a significant corre-
lation between the CONSCAN- and inclinometer-derived errors. Each data set shows agreement at the
sub-millidegree level.

VIIl. Conclusions

The alidade three-axis rotation table as a function of the antenna azimuth position was obtained from
the measured inclinometer tilts. From this table, the antenna pointing errors were derived. These errors
were compared with the CONSCAN-derived errors, showing good coincidence and the potential to reduce
the blind pointing by 2 to 3 mdeg. The procedure was designed as a look-up table to compensate for the
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azimuth-track-level unevenness. It shows potential as an on-line measuring device to compensate for all
errors caused by the alidade tilts (this includes azimuth-track unevenness, azimuth-axis tilt, and thermal
deformations).
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Fig. 13. Inclinometer 1 x-tilt (a) with the azimuth-axis tilt and
(b) with the azimuth-axis tilt removed.

INCLINOMETER 1 Y-TILT,
mdeg

INCLINOMETER 1 Y-TILT
RESIDUAL, mdeg

-3 | | | | | | |
0 50 100 150 200 250 300 350

AZIMUTH ENCODER, deg

Fig. 14. Inclinometer 1 y-tilt (a) with the azimuth-axis tilt and
(b) with the azimuth-axis tilt removed.
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Fig. 15. Pointing errors obtained from the azimuth correction table (solid
line) and CONSCAN measurements (dots). Cross-elevation error for azi-
muth angles from (a) 300 to 340 deg and (b) 0 to 60 deg, and elevation error
for azimuth angles from (c) 300 to 340 deg and (d) O to 60 deg.
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Appendix A

Derivation of the Cross-Elevation Pointing Error
From the Inclinometer Data

The cross-elevation error, A,.;, depends on the antenna elevation position, 6;. It depends also on the
rotation, d,, of the top of the alidade with respect to the y-axis (tilt of the elevation axis) and the alidade
twist, 4, (the rotation of the top of the alidade with respect to the z-axis), i.e.,

Ager = 0, c08(0er) — 6y sin(be;) (A-1)

[see Fig. 7(b)].

The tilt of the elevation axis is an average of the x-tilts of inclinometers 1 and 2; that is,
5y = 0.5(05135 + 042:3) (A—2)

while the alidade twist is not directly measured by inclinometers. It is determined as follows. From
Fig. A-1,

- A.TQ — Axl

d ;i

(A-3)

Fig. A-1. Determination of the z-rotation of the alidade.
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where Az, and Az, are horizontal displacements of the locations of inclinometers 1 and 2 and [ = 12.40 m
is the distance between the two inclinometers. The displacements, Ax;, and Ax,, are determined from the
tilts of inclinometers 8 and 7, respectively, by assuming that the horizontal displacement of the alidade
side due to azimuth-track unevenness is caused predominantly by the rigid-body motion of each side of the
alidade, as shown in Fig. A-2. This assumption was checked with the finite-element model of the alidade
(see Fig. A-3). Using the finite-element model, we determined Az; and Azo displacements, assuming the
rigid-body rotation of the bottom beam, and compared it with the actual displacements, Az, and Axs,
that included flexible deformations. The difference was 18 percent with respect to true rotations. If the
displacement were determined using the rigid-body assumption and the rotation of the middle beam, the
error in Ax; and Az, displacements is less than 7 percent. Thus, the middle-beam rotation was selected
as a rigid-body rotation estimator. This angle is measured as the x-tilt of inclinometers 7 and 8 (denoted
as ar, and ag,, respectively). The top displacements, Axz; and Axs, of the alidade are obtained from
the rigid-body angles as follows, based on the alidade geometry shown in Fig. A-4. From this figure, we
have

Az, = sAa
(A-4a)
Az = Az, cos(f)
Hence,
Az = s cos(f) Aa=h A«a (A-4b)

Fig. A-2. Rigid-body rotation of the alidade side.
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Fig. A-3. Deformation of the alidade due to a single-wheel
vertical displacement.
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Fig. A-4. Determination of the alidade
rotation.

Therefore,

ALL‘l = ha8$

A[EQ = hOL7¢

and h = 15.43 m.

16



Introducing Eq. (A-5) to Eq. (A-3), we obtain

h(a’?w - a8w)

0, = ]

(A-6)
or, since h/l = 1.245, we found that
0, = 1.245(avry — aigy) (A-7)

Combining Egs. (A-1), (A-3), (A-4), and (A-T7), the cross-elevation pointing error and the azimuth error
are determined from the x-tilts of inclinometers 1, 2, 7, and 8 as follows:

Ager = 1.245(ary — agy ) €08(0er) — 0.5(a1z + oz ) sin(fe;) (A-8)

Appendix B

Derivation of the Azimuth-Axis Tilt From the Inclinometer Data

The inclinometer tilts caused by the azimuth-axis tilt are described as

a1, (1) = acos(e(i) + ¢)
(B-1)
a1y (7) = asin(e(z) + ¢)

or

a1 (1) = acc; — ass;
(B-2)

a1y (1) = acsi — asc;

where a. = acos(p), as = asin(p), ¢; = cos(e(i)), and s; = sin(e(i)). For n samples, we define the
following vectors and matrices:

oy = {giz } (B-3a)

a12(1) oy (1)
a1(2) a1y(2)

where oy, = . and apy = y , and
a1z(n) aiy(n)
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C1 S1
C2 52

where ¢ = . and s = . ¢,and
Cn Sn

a={el

For the above notations, Eq .(B-2) can be rewritten in a compact form:

PA=oy
The least-squares solution, A, of Eq. (B-4) is as follows:
A= (PTP)"'PTq,
But, from Eq. (B-3c¢), it follows that
acos(p) = A1p
asin(p) = A

Therefore,

a =4 Aty + A3,
_ A21)

= tan~! [ ==

4 <A11
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